TeliaSonera Server
Certificate Policy and Certification Practice Statement

TeliaSonera Server CA v1

OID 1.3.6.1.4.1.271.2.3.1.1.15

Revision Date: 3rd April 2014

Version: 1.2

Published by: TeliaSonera
Copyright © TeliaSonera

No part of this document may be reproduced, modified or distributed in any form or by any means, in whole or in part, or stored in a database or retrieval system, without prior written permission of TeliaSonera.

However, permission generally applies for reproducing and disseminating this CPS in its entirety provided that this is at no charge and that no information in the document is added to, removed or changed.
Table of Contents

Table of Contents ...III
Revision History .. VII
1 INTRODUCTION ... 8
 1.1 Overview .. 8
 1.2 Document name and identification ... 8
 1.3 PKI participants ... 9
 1.3.1 Certification authorities ... 9
 1.3.2 Registration authorities .. 9
 1.3.3 Subscribers ... 9
 1.3.4 Relying parties ... 9
 1.3.5 Other participants .. 9
 1.4 Certificate usage ... 9
 1.4.1 Appropriate certificate uses .. 9
 1.4.2 Prohibited certificate uses .. 10
 1.5 Policy administration ... 10
 1.5.1 Organization administering the document .. 10
 1.5.2 Contact person .. 10
 1.5.3 Person determining CPS suitability for the policy ... 10
 1.5.4 CPS approval procedures ... 11
 1.6 Definitions and acronyms ... 11
2 PUBLICATION AND REPOSITORY RESPONSIBILITIES ... 12
 2.1 Repositories ... 12
 2.1.1 CPS Repository .. 12
 2.1.2 Revocation Information Repository ... 12
 2.1.3 Certificate Repository ... 12
 2.2 Publication of certification information .. 12
 2.3 Time or frequency of publication .. 12
 2.4 Access controls on repositories .. 12
3 IDENTIFICATION AND AUTHENTICATION ... 13
 3.1 Naming .. 13
 3.1.1 Types of names ... 13
 3.1.2 Need for names to be meaningful ... 13
 3.1.3 Anonymity or pseudonymity of Subscribers .. 13
 3.1.4 Rules for interpreting various name forms ... 14
 3.1.5 Uniqueness of names .. 14
 3.1.6 Recognition, authentication, and role of trademarks ... 14
 3.2 Initial identity validation .. 14
 3.2.1 Method to prove possession of private key ... 14
 3.2.2 Authentication of organization identity ... 14
 3.2.3 Authentication of individual identity ... 14
 3.2.4 Non-verified Subscriber information .. 15
 3.2.5 Validation of authority ... 15
 3.2.6 Criteria for interoperation ... 15
 3.3 Identification and authentication for re-key requests ... 15
 3.3.1 Identification and authentication for routine re-key .. 15
 3.3.2 Identification and authentication for re-key after revocation 15
 3.4 Identification and authentication for revocation request .. 15
4 CERTIFICATE LIFE-CYCLE OPERATIONAL REQUIREMENTS 17
 4.1 Certificate Application .. 17
 4.1.1 Who can submit a certificate application .. 17
 4.1.2 Enrollment process and responsibilities ... 17
 4.2 Certificate application processing .. 17
 4.2.1 Performing identification and authentication functions 17
 4.2.2 Approval or rejection of certificate applications .. 18
4.2.3 Time to process certificate applications ... 18

4.3 Certificate issuance .. 18
4.3.1 CA actions during certificate issuance ... 18
4.3.2 Notification to Subscriber by the CA of issuance of certificate.............................. 18

4.4 Certificate acceptance ... 18
4.4.1 Conduct constituting certificate acceptance ... 18
4.4.2 Publication of the certificate by the CA ... 18
4.4.3 Notification of certificate issuance by the CA to other entities.............................. 18

5 FACILITY, MANAGEMENT, AND OPERATIONAL CONTROLS .. 24

6 TECHNICAL SECURITY CONTROLS .. 25

6.1 Key pair generation and installation .. 25
6.1.1 Key pair generation .. 25
6.1.2 Private key delivery to Subscriber ... 25
6.1.3 Public key delivery to certificate issuer ... 25
6.1.4 CA public key delivery to relying parties .. 25
6.1.5 Key sizes .. 25
6.1.6 Public key parameters generation and quality checking 25
6.1.7 Key usage purposes (as per X.509 v3 key usage field) ... 25

6.2 Private key protection and cryptographic module engineering controls 25
6.2.1 Cryptographic module standards and controls .. 25
6.2.2 Private key (n out of m) multi-person control .. 25
9.10.3 Effect of termination and survival ... 34
9.11 Individual notices and communications with participants 34
9.12 Amendments .. 34
 9.12.1 Procedure for amendment ... 34
 9.12.2 Notification mechanism and period ... 34
 See 9.12.1.. 34
 9.12.3 Circumstances under which OID must be changed 34
9.13 Dispute resolution provisions ... 35
9.14 Governing law .. 35
9.15 Compliance with applicable law ... 35
9.16 Miscellaneous provisions .. 35
9.17 Other provisions .. 35
ACRONYMS ... 36
DEFINITIONS ... 37
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Version date</th>
<th>Change</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11th June 2012</td>
<td>The first official version</td>
<td>TeliaSonera CA Policy Management team</td>
</tr>
<tr>
<td>1.01</td>
<td>11th September 2012</td>
<td>Fixed minor errors in references</td>
<td>TeliaSonera CA Policy Management team</td>
</tr>
<tr>
<td>1.02</td>
<td>21st December 2012</td>
<td>Added OCSP support, In validation a call back to technical contact person is an option, Fixed AIA extension description, Mandatory 2048 bit RSA key length</td>
<td>TeliaSonera CA Policy Management team</td>
</tr>
<tr>
<td>1.1</td>
<td>3rd May 2013</td>
<td>Geographical definition to Server Certificates, Suspension no more used, small technical fixes</td>
<td>TeliaSonera CA Policy Management team</td>
</tr>
<tr>
<td>1.2</td>
<td>3rd April 2014</td>
<td>All Subject fields except O and OU will refer to registered O location. Small fixes and clarifications.</td>
<td>TeliaSonera CA Policy Management team</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Overview

A Certification Practice Statement (CPS) is a Certification Authority’s (CA) description of the practices it follows when issuing certificates. The purpose of this CPS is to describe the procedures that the TeliaSonera Server CA v1 uses when issuing certificates, and that all Registration Authorities, Subscribers and Relying Parties shall follow in connection with these certificates.

This CPS describes the procedures and routines which apply when registering and completing a certificate and for revoking and revocation checking of certificates. This CPS will refer to separate TeliaSonera Production CPS, which describes the premises, procedures and routines which apply for the Production of TeliaSonera CA Services.

This CPS generally conforms to the IETF PKIX Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practice Statement Framework (also known as RFC 3647). This document is divided into nine sections:

- Section 1 - provides an overview of the policy and set of provisions, as well as the types of entities and the appropriate applications for certificates.
- Section 2 - contains any applicable provisions regarding identification of the entity or entities that operate repositories; responsibility of a PKI participant to publish information regarding its practices, certificates, and the current status; frequency of publication; and access control on published information.
- Section 3 - covers the identification and authentication requirements for certificate related activity.
- Section 4 - deals with certificate life-cycle management and operational requirements including application for a certificate, revocation, suspension, audit, archival and compromise.
- Section 5 - covers facility, management and operational controls (physical and procedural security requirements).
- Section 6 - provides the technical controls with regard to cryptographic key requirements.
- Section 7 - defines requirements for certificate, Certificate Revocation List (CRL) and Online Certificate Status Protocol (OCSP) formats. This includes information on profiles, versions, and extensions used.
- Section 8 - addresses topics covered and methodology used for assessments/audits; frequency of compliance audits or assessments; identity and/or qualifications of the personnel performing the audit or assessment; actions taken as a result of deficiencies found during the assessment; and who is entitled to see results of an assessment.
- Section 9 - covers general business and legal matters: the business issues of fees, liabilities, obligations, legal requirements, governing laws, processes, and confidentiality.

This CPS and all certificates containing the OID value reserved for this CPS conform to the current version of the Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates published at http://www.cabforum.org. In the event of any inconsistency between this document and those Requirements, those Requirements take precedence over this document.

1.2 Document name and identification

This CPS is titled TeliaSonera Server Certificate CPS and the CPS name of this CPS is {TELIASONERA-SERVER-CPS-1}.

This CPS is also a Certificate Policy for TeliaSonera server certificates. The certificates issued according to this CPS contain Certificate policy object identifier corresponding to the applicable certificate type. The routines and roles resulting from this CPS apply only in connection with certificates referring to the following Certificate policy object identifiers:

<table>
<thead>
<tr>
<th>Certificate type</th>
<th>Issuing CA</th>
<th>Certificate policy object identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SSL server certificates</td>
<td>TeliaSonera Server CA v1</td>
<td>1.3.6.1.4.1.271.2.3.1.1.15</td>
</tr>
</tbody>
</table>
This CPS also refers to the TeliaSonera Production CPS with the name {TELIASONERA-PRODUCTION-CPS-2}.

1.3 PKI participants

TeliaSonera server certificates are issued to devices (e.g. web servers) possessed by Customers of TeliaSonera or by TeliaSonera. All of the participating organizations shall undertake what’s stated in this Certification Practice Statement.

1.3.1 Certification authorities

The Certification Authority operating in compliance with this Certification Practice Statement is TeliaSonera. The name of the Certification Authority in the “Issuer” field of the certificate is TeliaSonera Server CA v1.

TeliaSonera Server CA v1 is a subordinate CA of TeliaSonera Root CA v1. TeliaSonera Root CA has its own CP and CPS describing the management of the certificate life cycle of subordinate CA certificates signed by it. The title of that CPS is TeliaSonera Root CPS and its CPS name is {TELIASONERA-ROOT-CPS-2}.

The Certification Authorities are responsible for managing the certificate life cycle of end entity certificates signed by the CAs. This will include:

- creating and signing of certificates binding Subjects with their public key
- promulgating certificate status through CRLs and/or OCSP responders

1.3.2 Registration authorities

The CA’s units authorized to perform registration functions, Customers acting as Customers of certification services and authorized by CA, or other organizations selected and authorized as RAs, with which the CA makes written agreements, can act as Registration Authorities. Through those agreements, RAs are obliged to follow this CPS for their part.

Typically RA is responsible for the following activities on behalf of a CA:

- identification and authentication of certificate subjects
- initiate or pass along revocation requests for certificates
- approve applications for renewal or re-keying certificates

1.3.3 Subscribers

The Subscriber is the organization that makes an agreement with the CA about issuance of a certificate to a Device in its possession (Subject). The Subscriber shall ensure that the Subject fulfils the obligations defined in this CPS and the conditions of the certification services.

The Subject of a certificate is a Device with installed software capable of utilizing the private key stored in the Device.

1.3.4 Relying parties

The Relying Party is a Customer, which utilizes certificates for securing the organization’s internal or external activities. The Relying Party can also be a company, organization or a private person having business with the Customer.

1.3.5 Other participants

No stipulation.

1.4 Certificate usage

1.4.1 Appropriate certificate uses

Certificates under this CPS are issued to servers or devices to be used for the following applications:
- Subject authentication
- verification of digital data origin and integrity
- confidentiality of digital data

TeliaSonera server certificates can be used, for example, to identify servers and secure SSL/TLS sessions.

1.4.2 Prohibited certificate uses

Applications using certificates issued under this CPS shall take into account the key usage purpose stated in the “Key Usage” extension field of the certificate.

Additionally, the key usage purposes and limitations possibly stated in the contract between the Subscriber and the CA shall be taken into account when using certificates.

1.5 Policy administration

1.5.1 Organization administering the document

TeliaSonera CA Policy Management Team is the responsible authority for reviewing and approving changes to this CPS. Written and signed comments on proposed changes shall be directed to the TeliaSonera contact as described in Section 1.5.2. Decisions with respect to the proposed changes are at the sole discretion of the TeliaSonera Policy Management Team.

Contact information:

TELIASONERA AB
SE-106 63 Stockholm
Phone: +46 (0)8 504 550 00
Internet: https://repository.trust.teliasonera.com/

1.5.2 Contact person

Contact person in matters related to this CPS:

TeliaSonera CA Product Manager
Email: cainfo@sonera.com
Phone: +358 (0) 20401
Internet: https://repository.trust.teliasonera.com/

Other contact information:

Finland:

Customer Service: +358 (0) 800 17000
Technical Customer Service: +358 (0) 800 19101
Revocation Service: +358 (0) 800 156677

Sweden:

Customer and Revocation Service: +46 (0)20 32 32 62
kundtjanst-eid@teliasonera.com

1.5.3 Person determining CPS suitability for the policy

TeliaSonera CA Policy Management Team is the administrative entity for determining this Certification Practice Statement (CPS) suitability to the applicable policies.
1.5.4 CPS approval procedures
TeliaSonera CA Policy Management Team will review any modifications, additions or deletions from this CPS and determine if modifications, additions or deletions are acceptable and do not jeopardize operations or the security of the production environment.

1.6 Definitions and acronyms
A list of definitions and acronyms can be found at the end of this document.
2 PUBLICATION AND REPOSITORY RESPONSIBILITIES

2.1 Repositories

2.1.1 CPS Repository
A full text version of this CPS is published at http://repository.trust.teliasonera.com/.

2.1.2 Revocation Information Repository
OCSP is the recommended Revocation Information Repository. It can be found from http://ocsp.trust.teliasonera.com.

Certificate Revocation Lists (CRLs) are published in the TeliaSonera LDAP directory and on the TeliaSonera website:

<table>
<thead>
<tr>
<th>Issuing CA</th>
<th>CRL addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>TeliaSonera Server CA v1</td>
<td>ldap://crl-1.trust.teliasonera.com/cn=TeliaSonera%20Server%20CA%20v1,o=TeliaSonera?certificaterevocationlist;binary</td>
</tr>
<tr>
<td></td>
<td>http://crl-3.trust.teliasonera.com/teliasoneraservercav1.crl</td>
</tr>
</tbody>
</table>

If OCSP is not used then http based CRL repository is recommended. It is listed at first on certificate’s CDP extension.

2.1.3 Certificate Repository
All issued certificates are stored in the local database of the CA system. Certificates may also be published to other repositories if it is a part of the TeliaSonera CA Service or agreed with a Customer.

2.2 Publication of certification information
It is TeliaSonera’s duty to make the following information available:
 a) This CPS
 b) Certificate revocation lists of revoked certificates
 c) Issued CA certificates and cross certificates for cross-certified CAs

TeliaSonera may publish and supply certificate information in accordance with applicable legislation.

Each published certificate revocation list (CRL) provides all processed revocation information at the time of publication for all revoked certificates of which the revocation list is intended to give notification.

TeliaSonera supplies CA certificates for all public CA keys provided these can be used for verifying valid certificates.

Subscribers will be notified that a CA may publish information submitted by them to publicly accessible directories in association with certificate information. The publication of this information will be within the limits of sections 9.3 and 9.4.

2.3 Time or frequency of publication
Updates to this CPS are published in accordance with the provisions specified in section 9.12.

Revocation information publication provisions are specified in section 4.9.

All issued certificates are stored in the local database of the CA system promptly on issuing.

Certificates may also be published to other repositories if it is a part of the TeliaSonera CA Service or agreed with a customer.

2.4 Access controls on repositories
This CPS, CRLs and CA certificates are publicly available. Only authorized CA personnel have access.
to Subscriber certificates stored in the local database of the CA system.
3 IDENTIFICATION AND AUTHENTICATION

3.1 Naming

3.1.1 Types of names

An X.501 Distinguished Name (DN) is used as an unambiguous name of the Subject in the "Subject" field of the certificate. The name always includes the following attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description of value</th>
</tr>
</thead>
<tbody>
<tr>
<td>commonName (CN, OID 2.5.4.3)</td>
<td>DNS domain name (FQDN) or IP address of the Subject. This field MUST contain a single IP address or Fully-Qualified Domain Name that is one of the values contained in the Certificate's subjectAltName extension. CommonName may also contain wildcard domain name (e.g. ".*.teliasonera.com"). Internal server names are allowed until October 2016.</td>
</tr>
<tr>
<td>OrganizationName (O, OID 2.5.4.10)</td>
<td>Customer in relation to which the Subject is identified. Common variations, abbreviations and DBA may also be used provided that the name owner is unambiguous.</td>
</tr>
</tbody>
</table>

Additionally, the "Subject" field may include following attributes depending on the usage purpose of the certificate:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description of value</th>
</tr>
</thead>
<tbody>
<tr>
<td>organizationalUnitName (OU, OID: 2.5.4.11)</td>
<td>Organizational unit defined by the Subscriber. This attribute may also be a DBA, tradename, trademark, address, location, or other text that refers to the specific Legal Entity in the field OrganizationName.</td>
</tr>
<tr>
<td>State or province (ST, OID: 2.5.4.8)</td>
<td>Qualifier for describing the location of the subject or subscriber.</td>
</tr>
<tr>
<td>Locality (L, OID: 2.5.4.7)</td>
<td>Qualifier for describing the location of the subject or subscriber.</td>
</tr>
<tr>
<td>Country (C, OID: 2.5.4.6)</td>
<td>Qualifier for describing the location of the subject or subscriber.</td>
</tr>
</tbody>
</table>

Subject name information must also be contained in the Subject Alternative Name X.509 version 3 extension. Subject Alternative Name extension may contain following attributes:

<table>
<thead>
<tr>
<th>SAN Attribute</th>
<th>Description of value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNSName</td>
<td>One or more DNS domain names (FQDN) of the Subject. May also contain wildcard domain names (e.g. ".*.teliasonera.com"). Internal server names are not used in certificates created after September 2013. No certificates with internal server names will be valid after October 1, 2016. Internal server name is a server name without a domain name or with Unregistered Domain Name. CA verifies that the domain part of a FQDN can be found from a public domain register.</td>
</tr>
<tr>
<td>iPAAddress</td>
<td>One or more IP addresses of the Subject. Reserved IP addresses are not used in certificates created after September 2013. No certificates with reserved IP addresses will be valid after October 1, 2016. Reserved IP address is an IPv4 or IPv6 address that the IANA has marked as reserved.</td>
</tr>
</tbody>
</table>

Additional Distinguished Name (DN) or Subject Alternative Name attributes may be used as necessary.
3.1.2 Need for names to be meaningful
Names will be meaningful as stated in the section 3.1.1.

3.1.3 Anonymity or pseudonymity of Subscribers
Names will be meaningful as stated in the section 3.1.1.

3.1.4 Rules for interpreting various name forms
No stipulation.

3.1.5 Uniqueness of names
The Subject name stated in a certificate will be unique for all certificates issued within the domain of
the CA, and conform to X.500 standards for name uniqueness. Subject name uniqueness means that
the CA will not issue certificates with identical names to different organizations. However, the CA may
issue several certificates to the same organization, and in that case the Subject names in those
certificates may be the same.

3.1.6 Recognition, authentication, and role of trademarks
The priority to entity names is given to registered trademark holders.

TeliaSonera reserves the right not to issue such a certificate, or to revoke a certificate that has already
been issued, when there is a name claim dispute involved concerning the certificate contents.

3.2 Initial identity validation

3.2.1 Method to prove possession of private key
The CA verifies the possession of the private key by verifying the electronic signature included in the
PKCS #10 certificate request. The request is accepted only when signed with the private key
associated with the public key to be certified.

3.2.2 Authentication of organization identity
TeliaSonera verifies the organization name (O) of a new Customer by checking the existence of
the company, its legal name, business identity code and other relevant organization information
are confirmed from an official business register maintained by an applicable government agency
(e.g. “ytj.fi” in Finland) or from certified true copy of the organization’s incorporation papers.
TeliaSonera verifies domain names and IP addresses from a database maintained by a reliable third
certification service e.g. “domain.fi” (for domain “.fi”), iis.se (for domain “.se”), ripe.net (for IP addresses) and
“www.networksolution.com/whois-search” (for non-country domains), that as of the date the
Certificate was issued, the Applicant either had the right to use, or had control of, the Fully-Qualified
Domain Name(s) and IP address(es) listed in the Certificate, or was authorized by a person having
such right or control (e.g. under a Principal-Agent or Licensor-Licensee relationship) to obtain a
Certificate containing the Fully-Qualified Domain Name(s) and IP address(es). Connection to the third
party database is SSL/TLS protected when applicable.

If the Subject Identity Information is to include a name, DBA, tradename, trademark, address or location
the CA verifies the Applicant’s right to use the name from applicable government agency responsible of
such names (e.g. “ytj.fi” in Finland). In FullSSL service such verification to done by the Customer
Registration Officer so that TeliaSonera only verifies the Organization names. In all cases TeliaSonera
CA regularly validates that the all Registration Officers have done the verification of all subject fields
correctly.

Alternatively the Registration Officer may use another allowed authentication or verification methods
listed in the Baseline Requirements for the Issuance and Management of Publicly-Trusted Certificates

3.2.3 Authentication of individual identity
The procedures to authenticate the identity of the Subscriber vary between the different TeliaSonera
Server Certificate services:
<table>
<thead>
<tr>
<th>SSL order by public electronic form</th>
<th>TeliaSonera authenticates the administrative (or technical) contact person defined in the certificate application by calling the contact person via the Customer’s PBX number or when there is no switchboard, by making a call to some other number in the organization, which is looked up from a directory maintained by a third party.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL order using TeliaSonera’s self service software</td>
<td>The Customer can make an agreement with TeliaSonera to act as a Registration Officer within the Customer Organisation (Full SSL Service) and to register TeliaSonera Server certificates using TeliaSonera’s RA system for Customers. The Customer Registration Officer is restricted to register certificates only within their own Organizations (O) and the domain names authorized by the CA. Before enabling the service or adding new authorized Organization or domain names, the CA verifies the organization identity and the domain names as described in the section 3.2.2. When registering Subjects, the identity of the Registration Officer is verified by means of the Registration Officers’ certificate issued by a TeliaSonera CA.</td>
</tr>
</tbody>
</table>

3.2.4 Non-verified Subscriber information

The Registration Officer is obliged to always review all subject information and initiate additional checking routines if there are any unclear Subject values. Only well-known certificate extensions are verified and others are accepted without verification.

Domain name ownership of domains in email addresses is not verified by TeliaSonera.

The value in OrganizationalUnit field is not verified unless it includes a name, DBA, tradename, trademark, address, location, or other text that refers to a specific Legal Entity. If such value is used TeliaSonera verifies that the Applicant has a right to use it according to a reliable data source.

3.2.5 Validation of authority

<table>
<thead>
<tr>
<th>SSL order by public electronic form</th>
<th>TeliaSonera verifies that the administrative contact person defined in the certificate application is employed by the Customer by calling the contact person via the Customer’s PBX number or when there is no switchboard, by making a call to some other number in the organization, which is looked up from a directory maintained by a third party.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL order using TeliaSonera’s self-service software</td>
<td>The Administrative Contact Person, who grants the necessary initial authorizations in the Customer, has been identified in the service agreement or order. TeliaSonera verifies that the Organization has authorized the certificate service by contacting the contact person specified in the agreement by phone, mail or other similar methods. A Registration Officer in a Customer has the right to define new Registration Officers. Authorization is based on multi-factor authentication to TeliaSonera’s self-service software (typically certificate and PIN code).</td>
</tr>
</tbody>
</table>

3.2.6 Criteria for interoperation

Not applicable.

3.3 Identification and authentication for re-key requests

3.3.1 Identification and authentication for routine re-key

No special routine exists for renewal of TeliaSonera Server certificates. In Subject registration the same process will be followed as in the initial registration.

3.3.2 Identification and authentication for re-key after revocation
After revocation of a Subject’s certificate, if the Subscriber wants to have a new certificate, then the same process will be followed as in the initial registration.

3.4 Identification and authentication for revocation request

Revocation by Customer

In cases where a Customer can issue SSL certificates using TeliaSonera’s self-service software, the Subscriber shall submit a request for certificate revocation to the Registration Officer of its own organization, who has additionally the rights of a Revocation Officer. The Revocation Officer in the Customer is responsible for the verification of the authenticity of the request to revoke the certificate. The identity of the Revocation Officer in the Customer is verified based on a certificate.

Revocation by the Revocation Service of the CA

The Subscriber or Registration Officer in a Customer shall submit a request for certificate revocation to the Revocation Service by telephone or by e-mail. The Revocation Service will make a call back to the Customer and asks certain detailed data. This data is compared with the information recorded about the Subject or Subscriber at registration, and if necessary, with information in the agreements made with the Subscriber or with the Customer. If the data match the certificate will be revoked.

In certain situations where there is an identified risk of abuse of the private key or when it is obvious that the authorized use of the key is prevented, it may be necessary to revoke the certificate on request of someone else but the above mentioned entities. In that case the verification of the authenticity of the revocation request can require other authentication methods. In cases where reliable verification cannot be immediately performed the CA may revoke the certificate to reduce risks.
4 CERTIFICATE LIFE-CYCLE OPERATIONAL REQUIREMENTS

4.1 Certificate Application

4.1.1 Who can submit a certificate application

| SSL order by public electronic form | Manually processed Certificate application can be submitted by a representative of the Organization, which possesses the Device to which the certificate is applied. If the application is submitted by a different organization from the organization that owns the domain name or the IP address (e.g. by an IT service provider), the application must be authorized by the organization owning the domain name or IP address. |
| SSL order using TeliaSonera’s self service software | Automatically processed Certificate application can be submitted by an authorized Registration Officer in a Customer that has made a SSL Service agreement with TeliaSonera. Authorized TeliaSonera personnel can also submit these applications for devices of TeliaSonera. |

TeliaSonera will issue server certificates only to organizations that are registered in the European Economic Area. The European Economic Area (EEA) comprises the countries of the European Union (EU), plus Iceland, Liechtenstein and Norway.

TeliaSonera may refuse to issue certificates to organizations registered in countries where TeliaSonera cannot reliably validate information on the certificate application.

4.1.2 Enrollment process and responsibilities

| SSL order by public electronic form | A certificate to a Device (an SSL server certificate) is applied by filling in a form that is publicly available at TeliaSonera’s web site. A Certificate Signing Request (CSR) that is a standard format certificate request generated by the Device shall be attached to the form. The completed application forms are directed to TeliaSonera’s RA office where the sufficiency of the application is checked. Before the application can be submitted, the Subscriber has to accept the Subscriber responsibilities and terms and conditions of the service. |
| SSL order using TeliaSonera’s self service software | A Registration Officer in a Customer applies for certificates to Devices (SSL server certificates) directly from the CA system by using the self service application provided by TeliaSonera. The application will print all relevant certificate request values on screen for final review. If accepted by the Registration Officer and the CA configuration the request is processed automatically. It may contain only pre-defined Domain Name and Organization Name values allowed to this Customer. Only TeliaSonera Registration Officers may add new allowed Domain Name or Organization Name values for Customers. New values are always verified according to 3.2. The Customer is bound through a SSL Service Agreement with TeliaSonera. Customer’s Registration Officers also accept Customer Responsibilities when they logon to TeliaSonera’s self service application for the first time. |

4.2 Certificate application processing

4.2.1 Performing identification and authentication functions

TeliaSonera performs identification and authentication of Subject and Subscriber information in accordance with the section 3.2.
4.2.2 Approval or rejection of certificate applications
TeliaSonera will approve a certificate application if it meets the requirements documented in this CPS and there are no other reasons to reject the application. All other certificate applications will be rejected.

The Subscriber will be informed on why the certificate application was rejected and on how to proceed to be approved.

4.2.3 Time to process certificate applications

<table>
<thead>
<tr>
<th>Order type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL order by public electronic form</td>
<td>TeliaSonera process the applications within reasonable time frame.</td>
</tr>
<tr>
<td>SSL order using TeliaSonera's self service software</td>
<td>The certificate request is processed automatically by TeliaSonera's RA and CA systems immediately after the request is submitted.</td>
</tr>
</tbody>
</table>

4.3 Certificate issuance

4.3.1 CA actions during certificate issuance
If the certificate application is approved, the CA issues the certificate. The CA system accepts only such certificate requests the origin of which can be authenticated. The certificate is created by the CA according to the information contained in the certificate request and configured for the Customer. However, the CA may overwrite or delete some certificate information using pre-defined certificate profile specific standard values.

4.3.2 Notification to Subscriber by the CA of issuance of certificate

<table>
<thead>
<tr>
<th>Order type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL order by public electronic form</td>
<td>Subscriber is informed of the acceptance or rejection of the certificate request. TeliaSonera's RA office delivers a web link to the contact person for fetching of the certificate.</td>
</tr>
<tr>
<td>SSL order using TeliaSonera's self service software</td>
<td>The certificate is available for the Customer's Registration Officer in the RA tool after the issuance.</td>
</tr>
</tbody>
</table>

4.4 Certificate acceptance

4.4.1 Conduct constituting certificate acceptance
The Subscriber is considered to have accepted the certificate when the private key associated with it has been used, or when the certificate has been installed into a Device.

4.4.2 Publication of the certificate by the CA
TeliaSonera will not publish Subscriber certificates to a publicly available repository if not agreed upon with the Customer.

4.4.3 Notification of certificate issuance by the CA to other entities
No stipulation.

4.5 Key pair and certificate usage

4.5.1 Subscriber private key and certificate usage
The Subscriber shall only use certificates and their associated key pairs for the purposes identified in this CPS and in applicable agreements with TeliaSonera. Issued certificates contain information which
defines suitable areas of application for the certificate and its associated keys. Area of application labelling takes place in accordance with X.509 and chapter 7 of this CPS. For more information regarding appropriate Subscriber key usage see sections 1.4.1 and 6.1.7.

The Subscriber shall protect the Subject private key from unauthorized use and discontinue the use of the Subject private key immediately and permanently in case the private key is compromised.

4.5.2 Relying party public key and certificate usage

Prior to accepting a TeliaSonera Server certificate, a relying party is responsible to:
 a) Verify that the certificate is appropriate for the intended use;
 b) Check the validity of the certificate, i.e. verify the validity dates and the validity of the certificate and issuance signatures; and
 c) Verify from a valid Certificate Revocation List (CRL) or other certificate status service provided by the CA that the certificate has not been revoked or suspended. If certificate status cannot be verified due to system failure or similar, the certificates shall not be accepted.

4.6 Certificate renewal

Certificate renewal is the re-issuance of a certificate with a new validity date using the same public key corresponding to the same private key.

4.6.1 Circumstance for certificate renewal

When the validity time of a certificate is about to end, the certificate can be renewed.

4.6.2 Who may request renewal

Renewal may be requested by the same persons as the initial certificate application as described in section 4.1.1.

4.6.3 Processing certificate renewal requests

<table>
<thead>
<tr>
<th>SSL order by public electronic form</th>
<th>Certificate renewal requests are processed like the initial certificate requests as described in section 4.2.</th>
</tr>
</thead>
</table>
| SSL order using TeliaSonera's self service software | Registration Officer has an option to renew certificates using the tool provided by the CA, in which case the tool uses the old CSR file to renew the certificate.
Registration Officer is responsible to ensure that the certificate information is still valid and that there are no other obstacles to the renewal.
Certificate renewal and re-key requests may also be processed like the initial certificate requests as described in section 4.2. |

4.6.4 Notification of new certificate issuance to Subscriber

The Subscriber is notified as described in section 4.3.2

4.6.5 Conduct constituting acceptance of a renewal certificate

Conduct constituting acceptance of a renewal certificate is described in section 4.4.1.

4.6.6 Publication of the renewal certificate by the CA

Renewed certificates are published like initial certificates as described in section 4.4.2.
4.6.7 Notification of certificate issuance by the CA to other entities
No stipulation.

4.7 Certificate re-key
Certificate re-key is the re-issuance of a certificate using new public and private keys. The key pairs are generated by the Subscriber and the CA does not check if the certificate renewal request is made using the existing or a new key pair. However, TeliaSonera recommends that the Subscriber creates new key pair when renewing the certificate. Certificate re-key requests are processed as initial certificate requests as described in sections 4.1 – 4.4.

4.8 Certificate modification
Certificate modification is the re-issuance of the certificate due to changes in the certificate information other than the validity time (certificate renewal) or Subscriber’s public key (certificate re-key). Certificate modification requests are processed as initial certificate requests as described in sections 4.1 – 4.4.

4.9 Certificate revocation and suspension

4.9.1 Circumstances for revocation
A certificate must be revoked under the following conditions:

1. Upon suspected or known compromise of the private key;
2. Upon suspected or known compromise of the media holding the private key;
3. Subject or subscriber information is known to be invalid or re-verification fails.
4. When there is an essential error in the certificate

A certificate may be revoked under the following conditions:

1. When any information in the certificate changes;
2. Upon termination of a Subject;
3. When a Subject no longer needs access to secured organizational resources;
4. When the certificate is redundant (for example, a duplicate certificate has been issued).
5. Customer’s certificate contract with TeliaSonera has ended.
6. Any other reason that makes the certificate obsolete or threats related keys

TeliaSonera in its discretion may revoke a certificate under any circumstances, for example when an entity fails to comply with obligations set out in this CPS, any applicable agreement or applicable law. TeliaSonera will revoke a certificate at any time if TeliaSonera suspects that conditions may lead to a compromise of a Subscriber’s keys or certificates.

4.9.2 Who can request revocation
The revocation of a certificate can be requested by:

1. A Subscriber or Registration Officer in the Customer that has made an application for a certificate on behalf of an organization, device or application; or
2. Personnel of TeliaSonera.
3. Owner of the server or device that possesses the certificate

4.9.3 Procedure for revocation request
Subscriber or Applicant may contact TeliaSonera Revocation Service by telephone or email and make a revocation request (look 1.5.2). Authorized TeliaSonera revocation staff then authenticates the identity of the originator of a revocation request according to section 3.4 and processes the revocation request using TeliaSonera’s revocation system.
In case of SSL Service where the Customer can issue SSL certificates using TeliaSonera’s self
service software, the Registration Officer in the Customer may also make the revocation using the self
service software.

When making a revocation request as above, TeliaSonera’s system checks that the person making
revocation request is authorized to do so and after that the certificate in question is revoked.

4.9.4 Revocation request grace period
The CA is available for revocation requests 24 hours per day, 7 days per week.

When a reason for the revocation of a certificate appears, the Subscriber shall immediately inform the
Revocation Service. In case of SSL Service where the Customer can issue SSL certificates using
TeliaSonera’s self service software, the Registration Officer shall revoke the certificate using the self
service software or inform TeliaSonera’s Revocation Service immediately, when a reason for the
revocation of a certificate comes to his notice.

The CA shall not be responsible for the damage caused by illicit use of the Subject’s private key. The
CA shall be responsible for the publication of the revocation information on the Certificate Revocation
List according to the principles given in this CPS.

4.9.5 Time within which CA must process the revocation request
TeliaSonera processes revocation requests within reasonable time frame. There are no specific
requirements for the processing time unless otherwise agreed with the Customer.

4.9.6 Revocation checking requirement for relying parties
Prior to using a certificate, it is the Relying Party’s responsibility to check the status of all certificates in
the certificate validation chain. A certificate cannot be reasonably relied on if the Relying Party does not
diligently follow the certificate status checking procedures denoted below:

- A Relying Party shall ensure the authenticity and integrity of the CRLs or OCSP responses by
 checking the digital signature and the certification path related to it.
- The Relying Party shall also check the validity period of the CRL or OCSP response in order to
 make sure that the information is up-to-date.
- Certificates may be stored locally in the Relying Party’s system, but the prevailing revocation
 status of each of those certificates shall be checked before use.
- If valid certificate status information cannot be obtained because of a system or service failure, not
 a single certificate must be trusted. The acceptance of a certificate in violation of this condition
 befalls at the Relying Party's own risk.

The Relying Party may acquire the checking of the CRLs as a service that shall follow the certificate
status checking procedures denoted above.

4.9.7 CRL issuance frequency
The Revocation Status Service is implemented by publishing Certificate Revocation Lists (CRLs),
electronically signed by the CA, in a public directory. The rules below are followed:

- A new CRL is published in the directory at intervals of not more than 2 hours.
- The validity time of a CRL is forty-eight (48) hours.

There may be several valid CRLs available at the same time. The one of those, which has been
published as the latest, contains the most real time information.

4.9.8 Maximum latency for CRLs
CRLs are published to the TeliaSonera LDAP directory and updated automatically. Normally latency
will be a matter of seconds.

4.9.9 On-line revocation/status checking availability
TeliaSonera is providing on-line revocation status checking via the OCSP protocol. The OCSP
service address is added to certificate extension as defined by RFC2560.
4.9.10 On-line revocation checking requirements
In general all OCSP requests will be signed.
All responses will be signed by a private key corresponding to a public key certified by the CA on
which the OCSP request is made.

The OCSP service is updated through the use of CRLs and deltaCRLs that are published on regular
basis. The actual time intervals for the updates of the CRLs and deltaCRLs are described in the
section 4.9.7. Alternatively the OCSP service may use the original CA database information. In that
case the OSCP response has always the latest status information. OCSP responder will not respond
with a "good" status for certificates that do not exist in the CA database.

4.9.11 Other forms of revocation advertisements available
No stipulation.

4.9.12 Special requirements regarding key compromise
No stipulation.

4.9.13 Circumstances for suspension
Suspension is not used after March 2013.

4.9.14 Who can request suspension
Suspension is not used after March 2013.

4.9.15 Procedure for suspension request
Suspension is not used after March 2013.

4.9.16 Limits on suspension period
Suspension is not used after March 2013.

4.10 Certificate status services

4.10.1 Operational characteristics
The primary method for status checking is OCSP Service. The CRLs are published in the TeliaSonera's
LDAP directory and website as disclosed in chapter 2.1.2.

4.10.2 Service availability
The certificate status services are available 24 hours per day, 7 days per week.

4.10.3 Optional features
No stipulation.

4.11 End of subscription
The end of a subscription as a result of no longer requiring the service, compromise, or termination of
service (voluntary or imposed) may result in the immediate revocation of the certificate and the
publishing of a CRL or other certificate status verification system.

4.12 Key escrow and recovery

4.12.1 Key escrow and recovery policy and practices
A Subscriber’s digital signature private keys will not be escrowed.
4.12.2 Session key encapsulation and recovery policy and practices

No stipulation.
5 FACILITY, MANAGEMENT, AND OPERATIONAL CONTROLS

All stipulations regarding chapter 5 Facility Management, and Operational Control are specified in “TeliaSonera Production CPS”.

6 TECHNICAL SECURITY CONTROLS

All general stipulations regarding chapter 6 Technical Security Controls are specified in “TeliaSonera Production CPS”.

The sections below are additions to the texts in the corresponding sections of the “TeliaSonera Production CPS” to complement and specify information concerning Subscriber key management.

6.1 Key pair generation and installation

6.1.1 Key pair generation
The Subscriber generates the key pair using server software or hardware security module. Third party key generation systems (e.g OpenSSL) can be used if the server itself isn’t supporting key generation.

6.1.2 Private key delivery to Subscriber
Not applicable.

6.1.3 Public key delivery to certificate issuer
The public key is delivered digitally signed in a Certificate Signing Request (CSR) file and using an encrypted connection.

6.1.4 CA public key delivery to relying parties
Methods to deliver CA certificates to Subscribers and Relying Parties are described in TeliaSonera Production CPS.

6.1.5 Key sizes
The CA requires that the Subscribers generate at least 2048 bit RSA keys.

6.1.6 Public key parameters generation and quality checking
TeliaSonera may refuse to accept certificate request if it is containing a known weak RSA key.

6.1.7 Key usage purposes (as per X.509 v3 key usage field)
Issued certificates contain information which defines suitable areas of application for the certificate and its associated keys. The CA is not responsible for use other than the given key usage purposes. Area of application labeling takes place in accordance with X.509 and chapter 7.

6.2 Private key protection and cryptographic module engineering controls

6.2.1 Cryptographic module standards and controls
The Subscriber private keys are generated by the Subscribers and normally the private keys are stored in the software of a server.

6.2.2 Private key (n out of m) multi-person control
No stipulation.

6.2.3 Private key escrow
TeliaSonera does not escrow Subscriber private keys.

6.2.4 Private key backup
No backups are made of the Subscribers private keys by TeliaSonera.

6.2.5 Private key archival
TeliaSonera does not archive Subscriber private keys.
6.2.6 Private key transfer into or from a cryptographic module
No stipulation.

6.2.7 Private key storage on cryptographic module
No stipulation.

6.2.8 Method of activating private key
The Subscriber is responsible for the private key activation. The CA recommends that the Subscriber uses passwords or strong authentication methods to authenticate users to the server or other device before the private key is activated in accordance with section 6.4 and takes other appropriate measures for the logical and physical protection of the server or other device used to store private keys.

6.2.9 Method of deactivating private key
No stipulation.

6.2.10 Method of destroying private key
When the certificate has expired and has not been renewed, the private key related to it cannot be used any more in connection with certification services. The key is not returned to the CA to be destroyed but it remains in the possession of the Subscriber and should be destroyed by the Subscriber.

6.2.11 Cryptographic module rating
Subscriber is responsible for generation and protection of Subscriber private key.

6.3 Other aspects of key pair management

6.3.1 Public key archival
The CA stores the Subject public keys according to section 5.5 in the TeliaSonera Production CPS.

6.3.2 Certificate operational periods and key pair usage periods
The usage period of the Subscriber certificate shall not be longer than five (5) years.

The same keys may be certified again on expiration of a certificate, although it is not recommended by the CA. The usage period of the Subject public and private keys shall not exceed the period during which the applied cryptographic algorithms and their pertinent parameters remain cryptographically strong enough or otherwise suitable.

6.4 Activation data
The Subscriber uses his private keys with the help of activation data.

6.4.1 Activation data generation and installation
The Subscriber is responsible for activation data generation and installation. The Subscriber is recommended to use passwords or strong authentication methods to authenticate users to servers or other devices before the private key is activated. If passwords are used, the CA recommends that Subscriber uses passwords that consists of sufficiently many characters and cannot be easily guessed or concluded.

6.4.2 Activation data protection
The Subscriber is recommended to keep his activation data appropriately protected from unauthorized access.

6.4.3 Other aspects of activation data
No stipulation.
7 CERTIFICATE, CRL, AND OCSP PROFILES

7.1 Certificate profile

The contents definition of a certificate, in other words the certificate profile, defines the fields in a certificate. The certificate profile of the certificates follows the version 3 profile defined in the ITU X.509 standard. The profile of the certificates also follows the document RFC 5280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”.

The basic fields used in certificates are listed in the table below:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>This field states which of the certificate versions defined in the X.509 standard the certificate conforms to. The issued certificates conform to the version 3.</td>
</tr>
<tr>
<td>Serial number</td>
<td>The CA generates an individual serial number for every certificate. The number that has been given in this field is unique for every certificate created by the CA system. The software manages the uniqueness of the serial number automatically.</td>
</tr>
<tr>
<td>Signature algorithm</td>
<td>The signature algorithm is the set of mathematical rules according to which the CA software executes the signing of the certificate. Identifiers have been allocated for the algorithms that are generally used. The identifier of the algorithm used for the signing of the certificate is given in this field. The signature cannot be verified if the algorithm used is not known. The algorithm that is used for the signing of the certificates is sha1RSA or sha256RSA.</td>
</tr>
<tr>
<td>Issuer</td>
<td>This field states the name of the Issuer of the certificate. The Issuer name in the certificates of each CA has been described in section 1.3.1.</td>
</tr>
<tr>
<td>Validity</td>
<td>The validity of the certificate is that period of time during which the CA guarantees that it maintains status information of the certificate, in other words about the possible revocation of the certificate. This field states the date and time when the certificate comes into force, and the date and time after which the certificate is no more valid. The certificate can be trusted during its validity period if the certificate has not been published on the CRL.</td>
</tr>
<tr>
<td>Subject</td>
<td>This field identifies the Server or Device under whose possession the private key is, that corresponds to the public key contained in the certificate. The field includes the unambiguous name of the Subject. The contents of the field have been described in section 3.1.</td>
</tr>
<tr>
<td>Subject public key info</td>
<td>This field states the algorithm under which the public key of the Subject shall be used. The Subject’s public key itself is also given in this field. The algorithms and key lengths of the Subject keys are described in section 6.1.5.</td>
</tr>
</tbody>
</table>

7.1.1 Version number(s)

All issued certificates are X.509 Version 3 certificates, in accordance with the PKIX Certificate and CRL Profile.
7.1.2 Certificate extensions

Certificate extensions will be supported in accordance with RFC 5280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”. In general, following extension may be used in a Subscriber certificate:

<table>
<thead>
<tr>
<th>Extension</th>
<th>Authority</th>
<th>Extension description and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority key identifier</td>
<td>CA</td>
<td>The identifier of the issuing CA public key is given in this extension. The identifier can be used to identify the public key that corresponds to the private key used for the signing of the certificate. SHA-1 hash algorithm is used to calculate the identifier.</td>
</tr>
<tr>
<td>Subject key Identifier</td>
<td>CA</td>
<td>The identifier of the Subject public key that is contained in the certificate is given in this extension. The identifier can be used to pick up those certificates that contain a given public key. SHA-1 hash algorithm is used to calculate the identifier.</td>
</tr>
<tr>
<td>Certificate policies</td>
<td>CA</td>
<td>This extension states the policies according to which the certificate has been issued. The relevant policy is identified based on an individual identifier (object identifier, OID) assigned to the policy document or certain certificate type. The identifiers covered by this CPS have been given in section 1.2.</td>
</tr>
<tr>
<td>CRL distribution points</td>
<td>CA</td>
<td>This extension gives the location where the CRL is available. The exact addresses of the CRLs corresponding to the different certificate classes are given in section 4.10.1.</td>
</tr>
<tr>
<td>Key usage</td>
<td>CA</td>
<td>The key usage purposes of the public key contained in the certificate are given in this extension. The CA is not responsible for use other than the given key usage purposes. The key usage extension is optional for TeliaSonera server certificates. Purposes KeyCertSign and cRLSign are never set.</td>
</tr>
</tbody>
</table>
| Extended key usage | CA | This extension contains other key usage purposes of the public key except those contained in the “Key usage” extension. A key usage purpose given in this extension may be generally known or privately defined for a certain application. The extended key usage purposes of the public keys contained in the Subscriber certificates may include:
 a) Server authentication
 b) Server authentication and Client authentication |
| Subject alternative name | Subscriber| This extension should be used to relate identification information to the Subject. Subject alternative name information used in the Certificates is described in section 3.1.1. |
| Authority Info Access | CA | This extension may contain two values:
 a) The url to CA-certificate
 b) OCSP service address as defined by RFC2560
 Typically all server certificates include both listed values. |
7.1.3 Algorithm object identifiers
At least the following algorithms are supported for signing and verification:

\[
\text{sha1withRSAEncryption OBJECT IDENTIFIER ::= iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5; \{1.2.840.113549.1.1.5\}}.
\]

\[
\text{sha256withRSAEncryption OBJECT IDENTIFIER ::= iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11; \{1.2.840.113549.1.1.11\}}.
\]

7.1.4 Name forms
Every DN will be in the form of an X.501 DirectoryString in accordance with section 3.1.1.

7.1.5 Name constraints
Subject and Issuer DNs comply with PKIX standards and are present in all certificates.

7.1.6 Certificate policy object identifier
The certificate policy object identifier will be present in issued certificates and will contain the OID of the policy according to which the certificate has been issued. The identifiers covered by this CPS have been given in section 1.2.

7.1.7 Usage of Policy Constraints extension
No stipulation.

7.1.8 Policy qualifiers syntax and semantics
The policy qualifier CPSuri may be used in the Subscriber certificates. The value of the CPSuri points to TeliaSonera CA Services repository website where this CPS is published.

7.1.9 Processing semantics for the critical Certificate Policies extension
No stipulation.

7.2 CRL profile
The information contained in a Certificate Revocation List has been described below. The CRL is used to state which of the certificates, whose validity period has not yet expired have been revoked.

CRL basic fields are listed in the table below:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Field description and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>This field states which of the CRL versions defined in the X.509 standard the CRL conforms to. The CRLs conform to the version 2.</td>
</tr>
<tr>
<td>Signature</td>
<td>The CRLs are signed by using the same algorithm as is used for signing of the certificates. The algorithm used is sha1RSA or sha256RSA.</td>
</tr>
<tr>
<td>algorithm</td>
<td></td>
</tr>
<tr>
<td>Issuer</td>
<td>This field states the name of the Issuer of the CRL. The CRL issuer name is always the same as the Issuer name (the CA's name) in the certificates listed on the CRL.</td>
</tr>
<tr>
<td>This update</td>
<td>Date and time of the CRL issuance.</td>
</tr>
<tr>
<td>Next update</td>
<td>Date and time by which the next CRL shall be issued. The next CRL may be issued at any time after the issuing of the previous CRL, however, it shall be issued before the time stated in the “Next update” field. The time difference between “This update” and “Next update” is defined in section 4.9.7.</td>
</tr>
<tr>
<td>Revoked</td>
<td>This field states the serial numbers of revoked certificates, and for each revoked certificate the date and time of revocation and the reason for revocation.</td>
</tr>
<tr>
<td>certificates</td>
<td></td>
</tr>
</tbody>
</table>
In general, following CRL extension may be used:

<table>
<thead>
<tr>
<th>Extension</th>
<th>Extension description and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority key identifier</td>
<td>The identifier of the public key of the CRL Issuer is given in this field. The identifier can be used to identify the public key that corresponds to the private key used for the signing of the CRL. Within TeliaSonera PKI the SHA-1 hash algorithm is used to calculate the identifier.</td>
</tr>
<tr>
<td>CRL number</td>
<td>The CRL number is a number that indicates the position of the CRL in the sequence of issued CRLs. The numbering starts with 1, and it increases monotonically by one for each issued CRL. Based on the CRL number the user is able to determine if a certain CRL replaces another CRL.</td>
</tr>
</tbody>
</table>

7.2.1 Version number(s)

All issued CRL’s are X.509 version 2 CRL’s in accordance with the RFC 5280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

7.2.2 CRL and CRL entry extensions

CRL extensions will be supported in accordance with RFC 5280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

In general, the following entry extensions may be included in a CRL:

<table>
<thead>
<tr>
<th>Extension</th>
<th>Extension description and contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason Code of the CRL Entry</td>
<td>The reason for revocation can be one of the following: KeyCompromise, CACompromise, AffiliationChanged, Superseded, CessationOfOperation, CertificateHold</td>
</tr>
<tr>
<td>Invalidity date</td>
<td>The invalidity date provides the date, on which it is known or suspected that the private key was compromised or that the certificate otherwise became invalid. This date may be earlier than the revocation date in the CRL entry, which is the date at which the CA processed the revocation.</td>
</tr>
</tbody>
</table>

7.3 OCSP profile

7.3.1 Version number(s)

TeliaSonera OCSP responders conform to version 1 of RFC 2560.

7.3.2 OCSP extensions

The OCSP Nonce extension should be used in OCSP requests.
8 COMPLIANCE AUDIT AND OTHER ASSESSMENTS

8.1 Frequency or circumstances of assessment
An annual Compliance Audit will be performed by an independent, qualified third party.

8.2 Identity/qualifications of assessor
The Compliance Auditor must demonstrate competence in the field of compliance audits, and must be thoroughly familiar with the requirements which a CA service imposes on the issuance and management of certificates.

8.3 Assessor’s relationship to assessed entity
The Compliance Auditor should not have any financial, legal or organizational relationship with the audited party. A person cannot be Compliance Auditor if he/she:
 a) is owner to or joint owner to TeliaSonera or another company within the same group.
 b) is a member of the TeliaSonera management or the management of any subsidiary, or assists with TeliaSonera’s bookkeeping or management of means, or TeliaSonera’s control of them, or managing the issues regarding information security.
 c) is employed by or in other aspects in subordinate or dependent relation to TeliaSonera or any other company referred to in a) and b) above,
 d) is married to or co-habiter with or is sibling or close relative to a person that is referred to in a) and b) above, or
 e) is in debt to TeliaSonera or any other company referred to in a) to c) above.

8.4 Topics covered by assessment
The purpose of the Compliance Audit is to verify that TeliaSonera and all engaged subcontractors are complying with the requirements of this CPS and TeliaSonera Production CPS. The Compliance Audit will cover all requirements that define the operation of a CA under these CPSes including:
 a. The CA production integrity (key and certificate life cycle management); and
 b. CA environmental controls.

8.5 Actions taken as a result of deficiency
Depending on the severity of the deficiency, the following actions may be taken:
 a) The Compliance Auditor may note the deficiency as part of the report;
 b) The Compliance Auditor may meet with TeliaSonera and determine if the deficiency can be remedied and an action plan should be developed and steps taken to remedy the deficiency. Such steps could be to change applied procedures and/or updating the CPS;
 c) The Compliance Auditor may report the deficiency and if the TeliaSonera CA Service deems the deficiency to have risk to the operation of the TeliaSonera or Customers CAs, the TeliaSonera CA Service operator may revoke the CA’s certificate.

Should the CPS be updated in such a way that the new CPS is deemed to involve an amended degree of security; a new CPS with a new identity shall be drawn up (see section 1.2).

8.6 Communication of results
The Compliance Auditor shall provide the TeliaSonera CA Service management with a copy of the results of the Compliance Audit. The results will not be made public unless required by law.
9 OTHER BUSINESS AND LEGAL MATTERS

9.1 Fees
Fees are defined in server certificate order site or in applicable Customer agreement.

9.1.1 Certificate issuance or renewal fees
See section 9.1.

9.1.2 Certificate access fees
See section 9.1.

9.1.3 Revocation or status information access fees
See section 9.1.

9.1.4 Fees for other services
See section 9.1.

9.1.5 Refund policy
See section 9.1.

9.2 Financial responsibility
All stipulations regarding the section 9.2 Financial responsibility are specified in TeliaSonera Production CPS.

9.3 Confidentiality of business information
All stipulations regarding the section 9.3 Confidentiality of business information are specified in TeliaSonera Production CPS.

9.4 Privacy of personal information
All stipulations regarding the section 9.4 Privacy of personal information are specified in TeliaSonera Production CPS.

9.5 Intellectual property rights
The private signing key is the sole property of the legitimate holder of the corresponding public key identified in a certificate.

No part of this CPS (other than in accordance with the exceptions detailed below) may be reproduced, published in a database system or transmitted in any form (electronic, mechanical, photocopied, recorded or similar) without written permission from TeliaSonera.

However, permission generally applies for reproducing and disseminating this CPS in its entirety provided that this is at no charge and that no information in the document is added to, removed or changed.

Applications to reproduce and disseminate parts of this document in any other way may be made to TeliaSonera in accordance with section 1.5.2.

9.6 Representations and warranties
All stipulations regarding the section 9.6 Representations and warranties are specified in TeliaSonera Production CPS.

9.7 Disclaimers of warranties
All stipulations regarding the section 9.7 Disclaimers of warranties are specified in TeliaSonera Production CPS.
9.8 **Limitations of liability**

All stipulations regarding the section 9.8 Limitations of liability are specified in TeliaSonera Production CPS.

9.9 **Indemnities**

All stipulations regarding the section 9.9 Indemnities are specified in TeliaSonera Production CPS.

9.10 **Term and termination**

9.10.1 **Term**

This CPS remains in force until notice of the opposite is communicated by TeliaSonera on its web site in the TeliaSonera CA Service Repository (https://repository.trust.teliasonera.com).

9.10.2 **Termination**

Termination of this document will be upon publication of a newer version or replacement document, or upon termination of CA operations.

9.10.3 **Effect of termination and survival**

The conditions and effect resulting from termination of this document will be communicated, on TeliaSonera’s web site in the TeliaSonera CA Service Repository (https://repository.trust.teliasonera.com), upon termination outlining the provisions that may survive termination of the document and remain in force.

9.11 **Individual notices and communications with participants**

TeliaSonera will define in any applicable agreement the appropriate provisions governing notices.

9.12 **Amendments**

TeliaSonera CA Policy Management Team is the responsible authority for reviewing and approving changes to this CPS. Written and signed comments on proposed changes shall be directed to the TeliaSonera CA Service contact as described in Section 1.5. Decisions with respect to the proposed changes are at the sole discretion of the TeliaSonera CA Policy Management Team.

9.12.1 **Procedure for amendment**

The only changes which can be carried out to this CPS without notification are linguistic amendments and rearrangements which do not affect the security level of the described procedures and regulations.

Changes which shall take place with notification can be made to this CPS 15 days after notification. The TeliaSonera Policy Management Team will post the notification at the CPS publishing point at (https://repository.trust.teliasonera.com). Changes affecting the terms of an agreement shall be notified in writing to the address given in the contact information of the signatory of the agreement.

TeliaSonera Policy Management Team decides which measures are taken in relation to the comments received. If comments received necessitate changes to the original change proposal which were not covered by the original notification, these changes may come into force no earlier than 15 days after publication of a new modified notification.

9.12.2 **Notification mechanism and period**

See 9.12.1

9.12.3 **Circumstances under which OID must be changed**

If TeliaSonera Policy Management Team determines that a new Object Identifier (OID) is required, TeliaSonera Policy Management Team will assign a new OID and required amendments will be made.
9.13 Dispute resolution provisions
All stipulations regarding the section 9.13 “Dispute resolution provisions” are specified in TeliaSonera Production CPS.

9.14 Governing law
All stipulations regarding the section 9.14 “Governing law” are specified in TeliaSonera Production CPS.

9.15 Compliance with applicable law
All stipulations regarding the section 9.15 “Compliance with applicable law” are specified in TeliaSonera Production CPS.

9.16 Miscellaneous provisions
All stipulations regarding the section 9.16 “Miscellaneous provisions” are specified in TeliaSonera Production CPS.

9.17 Other provisions
All stipulations regarding the section 9.17 “Other provisions” are specified in TeliaSonera Production CPS.
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Certification Authority</td>
</tr>
<tr>
<td>CP</td>
<td>Certificate Policy</td>
</tr>
<tr>
<td>CPS</td>
<td>Certification Practice Statement</td>
</tr>
<tr>
<td>CRL</td>
<td>Certificate Revocation List</td>
</tr>
<tr>
<td>DBA</td>
<td>Doing Business As</td>
</tr>
<tr>
<td>DER</td>
<td>Distinguished Encoding Rules</td>
</tr>
<tr>
<td>DN</td>
<td>Distinguished Name</td>
</tr>
<tr>
<td>DSA</td>
<td>Digital Signature Algorithm</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level</td>
</tr>
<tr>
<td>EID</td>
<td>Electronic Identification</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>HSM</td>
<td>Hardware Security Module</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5</td>
</tr>
<tr>
<td>OCSP</td>
<td>On-line Certificate Status Protocol</td>
</tr>
<tr>
<td>OID</td>
<td>Object Identifier</td>
</tr>
<tr>
<td>PIN</td>
<td>Personal Identification Number</td>
</tr>
<tr>
<td>PKCS</td>
<td>Public Key Cryptography Standards</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PKIX</td>
<td>Public Key Infrastructure X.509 (IETF Working Group)</td>
</tr>
<tr>
<td>RA</td>
<td>Registration Authority</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comments</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest-Shamir-Adleman asymmetric encryption algorithm</td>
</tr>
<tr>
<td>SEIS</td>
<td>Secure Electronic Information in Society</td>
</tr>
<tr>
<td>SHA-1</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>S/MIME</td>
<td>Secure Multipurpose Internet Mail Extension</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>TTP</td>
<td>Trusted Third Party</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
</tbody>
</table>
DEFINITIONS

Access control:
The granting or denial of use or entry.

Activation Data:
Activation data, in the context of certificate enrollment, consists of a one-time secret communicated to the enrolling user (Subscriber) out of band. This shared secret permits the user to complete of the enrollment process.

Administrator:
A Trusted Person within the organization of a Processing Center, Service Center, Managed PKI Customer, or Gateway Customer that performs validation and other CA or RA functions.

Administrator Certificate:
A Certificate issued to an Administrator that may only be used to perform CA or RA functions.

Agent:
A person, contractor, service provider, etc. that is providing a service to an organization under contract and are subject to the same corporate policies as if they were an employee of the organization.

Application Server:
An application service that is provided to an organizational or one of its partners and may own a certificate issued under the organizational PKI. Examples are Web SSL servers, VPN servers (IPSec), object signer services, Domain Controllers, etc.

Authentication:
Checking the identity provided, e.g. when logging in, in the event of communication between two systems or when exchanging messages between users. General: strengthening of authenticity.

Authorization:
The granting of permissions of use.

Authorised representative:
An employee of the commissioner who has the authority to order and revoke certificates at the CA.

Asymmetric encryption algorithm:
An encryption technique which uses two related transformation algorithms: a public transformation, with the use of a public key, and a private transformation with the use of a private key. The two transformations are such that if the public transformation is known, it is mathematically impossible to derive the private transformation from this.

Base certificate:
See primary certificate.

Business process:
A set of one or more linked procedures or activities which collectively realize a business objective or policy goal, normally within the context of an organizational structure defining functional roles and relationships.

CA certificate:
Certificate that certifies that a particular public key is the public key for a specific CA.

CA key:
Key pair where the private key is used by the CA in order to sign certificates and where the public key is used to verify the same certificate.
Certificate:
The public key of a user, together with related information, digitally signed with the private key of the Certification Authority that issued it. The certificate format is in accordance with ITU-T Recommendation X.509.

Certificate extensions:
Sections of certificate content defined by standard X.509 version 3.

Certificate level:
Certificates exist at two levels: primary certificates and secondary certificates.

Certification Authority (CA):
An authority trusted by one or more users to manage X.509 certificates and CRLs.

Certification Chain:
An ordered list of Certificates containing an end-user Subscriber Certificate and CA Certificates, which terminates in a root Certificate.

Certificate Policy:
Named set of rules that indicates the applicability of a certificate to a particular community and/or class of applications with common security requirements. It is the principal statement of certificate policy governing the organizational PKI. The CP is a high-level document that describes the requirements, terms and conditions, and policy for issuing, utilizing and managing certificates issued by a CA.

Certification Practice Statement (CPS):
A statement of the practices, which a Certification Authority employs in issuing certificates. It is a comprehensive description of such details as the precise implementation of service offerings and detailed procedures of certificate life-cycle management and will be more detailed than the certificate policies supported by the CA.

Certificate Revocation List (CRL):
A periodically issued list, digitally signed by a CA, of identified Certificates that have been revoked prior to their expiration dates. The list generally indicates the CRL issuer’s name, the date of issue, the date of the next scheduled CRL issue, the revoked Certificates’ serial numbers, and the specific times and reasons for revocation. CRL can be used to check the status of certificates.

Confidential:
A security classification used to describe information which if disclosed could result in personal loss or minor financial loss. Personal information and tactical information would be deemed confidential.

Confidentiality:
Information that has an identifiable value associated with it such that if disclosed might cause damage to an entity.

Cross Certification:
The process describing the establishing of trust between two or more CAs. Usually involves the exchange and signing of CA certificates and involves the verification of assurance levels.

Cryptographic Module:
A unit in which encryption keys are stored together with a processor which can carry out critical cryptographic algorithms. Examples of cryptographic modules include EID cards.

Decryption:
The process of changing encrypted (coded) information into decrypted (legible) information. See also encryption.
Distinguished Encoding Rules (DER):
The Distinguished Encoding Rules for ASN.1, abbreviated DER, gives exactly one way to represent any ASN.1 value as an octet string. DER is intended for applications in which a unique octet string encoding is needed, as is the case when a digital signature is computed on an ASN.1 value.

Digital Signature:
The result of the transformation of a message by means of a cryptographic system using keys such that a person who has the initial message can determine that the key that corresponds to the signer’s key created the transformation and the message was not altered.

Directory Service:
Database service which in this document relates to a database structure in accordance with standard X.500 or LDAP.

Distinguished Name (DN):
Every entry in a X.500 or LDAP directory has a Distinguished Name, or DN. It is a unique entry identifier throughout the complete directory. No two Entries can have the same DN within the same directory. A DN is used in certificates to uniquely identify a certificate-owner.

Dual Control:
A process utilizing two or more separate entities (usually persons), operating in concert, to protect sensitive functions or information, whereby no single entity is able to access or utilize the materials, e.g., cryptographic key.

EID card:
Electronic ID card in the form of an active card containing certificates and keys while the front of the card can be used as a visual ID document.

Electronic identity check:
Identity check which can be carried out without the persons whose identity is being checked being present in person.

Electronic signature:
General signature designation created using IT. Digital equivalent to traditional signature. See also digital signature.

Encryption:
The process of changing information which can be interpreted (clear text) into encrypted information. The aim of the encrypted information is that it shall not be interpretable by anyone who does not hold exactly the right key (in symmetrical encryption) or exactly the right private key (in asymmetrical encryption) required to correctly decrypting the information.

E-mail Certificates:
Certificates utilized for encrypting and verifying digital signatures. Normally two separate certificate: one for encryption, the other for signature verification.

Entity:
Any autonomous element or component within the Public Key Infrastructure that participate in one form or another, such managing certificates or utilizing certificates. An Entity can be a CA, RA, Subscriber, Relying Party, etc.

FIPS 140-2:
Federal Information Processing Standard 140-2 (FIPS 140-2) is a standard that describes US Federal government requirements that IT products shall meet for Sensitive, but Unclassified (SBU) use. The standard was published by the National Institute of Standards and Technology (NIST), has been adopted by the Canadian government's Communication Security Establishment (CSE), and is likely to be adopted by the financial community through the American National Standards Institute (ANSI). The different levels (1 to 4) within the standard provide different levels of security and in the higher levels, have different documentation requirements.
FIPS 180-1:
Standard specifying a Secure Hash Algorithm, SHA-1, for computing a condensed representation of a message or a data file.

Integrity:
Ensuring consistency of an object or information. Within security systems, integrity is the principle of ensuring that a piece of data has not been modified maliciously or accidentally.

Internal Server Name:
A Server Name (which may or may not include an Unregistered Domain Name) that is not resolvable using the public DNS.

ISO 11568-5:
Basic principles and requirements for Key lifecycle for public key cryptosystems, provides instructions to financial institutions in the development, implementation and/or the operation of systems and procedures throughout Key's lifecycle

Key:
When used in the context of cryptography, it is a secret value, a sequence of characters that is used to encrypt and decrypt data. A key is a unique, generated electronic string of bits used for encrypting, decrypting, e-signing or validating digital signatures.

Key holder:
In this context, a person, an organisation, an organisational unit or a function which has exclusive control of the private key, the public equivalent of which is certified in a certificate. See also Subscriber.

Key Pair:
Often referred to as public/private key pair. One key is used for encrypting and the other key used for decrypting. Although related, the keys are sufficiently different that knowing one does not allow derivation or computation of the other. This means that one key can be made publicly available without reducing security, provided the other key remains private.

Log:
A sequential and unbroken list of events in a system or a process. A typical log contains log entries for individual events, each containing information on the event, who initiated it, when it occurred, what it resulted in, etc.

MD5:
A Message Digest Algorithm.

Non-repudiation:
Protection against the denial of the transaction or service or activity occurrence.

Non-repudiation services:
Service which aim to hold a key holder responsible for signed messages in such a way that they can be verified by a third party at a later point in time.

Object Identifier:
The unique alpha-numeric identifier registered under the ISO registration standard to reference a standard object or class.

Operator:
Employee of a CA.

Out of band process:
Communications which occur outside of a previously established communication method or channel.

PKCS #1:
Standard that provides recommendations for the implementation of public-key cryptography based on
the RSA algorithm, covering the following aspects: cryptographic primitives; encryption schemes;
signature schemes, etc.

PKCS #7:
A cryptographic message format or syntax managed and edited by RSA Laboratories. A standard
describing general syntax for data that may have cryptography applied to it, such as digital signatures
and digital envelopes.

PKCS #10:
A certificate request format or syntax managed and edited by RSA Laboratories. It is a standard
describing syntax for a request for certification of a public key, a name, and possibly a set of attributes.

PKIX:
The Public Key Infrastructure (X.509) or PKIX is an IETF Working Group established with the intent of
developing Internet standards needed to support an X.509-based PKI. The scope of PKIX extends to
also develop new standards for use of X.509-based PKIs in the Internet.

PKI personnel:
Persons, generally employees, associated with the operation, administration and management of a CA
or RA.

Policy:
The set of laws, rules and practices that regulates how an organization manages its business.
Specifically, security policy would be the set of laws, rules and practices that regulates how an
organization manages, protects and distributes sensitive information.

Primary certificate:
A certificate which is issued on the basis of identifying key holders other than by the key holder
producing another certificate. Identification then normally takes place through the key holder instead
producing an identity document.

PrintableString:
String format for representing names, such as Common Name (CN), in X.509 certificates. The
encoding of a value in this syntax is the string value itself.

Private Key:
The private key is one of the keys in a public/private key pair. This is the key that is kept secret as
opposed to the other key that is publicly available. Private keys a utilized for digitally signing
documents, uniquely authenticating an individual, or decrypting data that was encrypted with the
corresponding public key.

Public Key Infrastructure:
A set of policies, procedures, technology, audit and control mechanisms used for the purpose of
managing certificates and keys.

Public:
A security classification for information that if disclosed would not result in any personal damage or
financial loss.

Public Key:
The community verification key for digital signature and the community encryption key for encrypting
information to a specific Subscriber.

RA policy:
A named set of rules for the RA’s role in producing, issuing and revoking certificates and which
regulates the applicability of certificates within a specific area of application.

Registration Authority (RA):
An entity that performs registration services on behalf of a CA. RAs work with a particular CA to vet requests for certificates that will then be issued by the CA.

Re-key:
The process of replacing or updating the key(s). The expiration of the crypto period involves the replacement of the public key in the certificate and therefore the generation of a new certificate.

Relative Distinguished Name (RDN):
A Distinguished Name is made up of a sequence of Relative Distinguished Names, or RDNs. The sequences of RDNs are separated by commas (,) or semi-colons (;). There can be more than one identical RDN in a directory, but they must be in different bases, or branches, of the directory.

Relying Party:
A person or entity that uses a certificate signed by the CA to authenticate a digital signature or encrypt communications to a certificate Subject. The relying party relies on the certificate as a result of the certificate being sign by a CA, which is trusted. A relying party normally is but does not have to be a Subscriber of the PKI.

Repository:
A place or container where objects are stored. A data repository is technology where data is stored logically. In PKI terms, a repository accepts certificates and CRLs form one or more CAs and makes them available to entities that need them for implementing security services.

Revocation:
In PKI, revocation is the action associated with revoking a certificate. Revoking a certificate is to make the certificate invalid before its normal expiration. The Certification Authority that issued the certificate is the entity that revokes a certificate. The revoked status is normally published on a certificate revocation list (CRL).

RSA:
A public key cryptographic algorithm invented by Rivest, Shamir, and Adelman.

Secondary certificate:
A certificate issued on the basis of another certificate, the primary certificate. This means that the issuing CA relies on the CA which issued the primary certificate, i.e. accepts the public key’s certification of the key holder, which in turn requires reliance on the identification of the key holder when issuing the primary certificate being correct.

Sensitive:
Used to describe the security classification of information where the information if disclosed would result in serious financial loss, serious loss in confidence or could result in personal harm or death.

Signature Verification Certificate:
Often referred to as simply a Signature Certificate. It is the certificate containing the public key used to verify a digital signature that was signed by the corresponding private key.

Split Knowledge
A condition under which two or more parties separately and confidentially have custody of components of a single key that, individually, convey no knowledge of the resultant cryptographic key. The resultant key exists only within secure cryptographic devices.

SSL Client Certificate:
Certificate utilized to verify the authentication of an end user to a server when a connection is being established via a SSL session (secure channel).

SSL Server Certificate:
Certificate utilized to verify the authentication of a web or application server to the end user (client) when a connection is being established via a SSL session (secure channel).
Storage module:
In this document relates to cryptographic module.

Subject:
Entity identified in a certificate as the holder of the private key associated with the public key given in the certificate. [ETSI TS 101 456 v1.2.1] Subject can also be a device (a data network component or software, hereafter referred to as “Device”).

Subscriber:
Entity subscribing with a Certification Authority on behalf of one or more Subjects. The Subject may be a Subscriber acting on its own behalf. [ETSI TS 101 456 v1.2.1]

Surveillance Camera:
A surveillance camera is a video recording device used for detection and identification of unauthorized physical entry to a secured area. A camera used for recording a signing ceremony for auditing purposes is not considered a surveillance camera.

Symmetric encryption:
Encryption system characterised by both the sender and the recipient of encrypted information using the same secret key for both encryption and decryption.

Threat:
A danger to an asset in terms of that asset's confidentiality, integrity, availability or legitimate use.

Token:
Hardware devices, normally associated with a reader, used to store and/or generate encryption keys, such as smartcards and USB tokens.

Trusted Third Party (TTP):
A party on which two or more collaborative parties rely. A TTP carries out services for the collaborative parties, such as time-stamping, certificate issuing, etc.

Trusting party:
A recipient of a certificate which trusts this certificate on authentication, verification of digital signatures and/or encryption of information. See also Relying Party.

Unambiguous identity:
An identity comprising a set of attributes which relate unambiguously to a specific person or entity. The unambiguous connection between the identity and the person may be dependant on the context within which the identity term is used. Certain contexts may require assistance from the current registrar of various attributes.

URI
Universal Resource Indicator - an address on the Internet.

UTF8String
UTF-8 is a type of Unicode, which is a character set supported across many commonly used software applications and operating systems. UTF-8 is a multibyte encoding in which each character can be encoded in as little as one byte and as many as four bytes. Most Western European languages require less than two bytes per character. Greek, Arabic, Hebrew, and Russian require an average of 1.7 bytes. Japanese, Korean, and Chinese typically require three bytes per character. Such Unicode is important to ensure that universal /foreign characters are supported.

Verification:
The process of ensuring that an assumption is correct. This term relates primarily to the process of ensuring that a digital signature represents the party which the signed information details as its issuer.

Vettor:
A person who verifies information provided by a person applying for a certificate.

Vulnerability:
Weaknesses in a safeguard or the absence of a safeguard.

Written:
Where this CPS specifies that information shall be written, this requirement is generally also met by digital data provided that the information it contains is accessible in such a way that it is useable by the parties involved.

X.500
Specification of the directory service required to support X.400 e-mail initially but common used by other applications as well.

X.501 PrintableString:
String format for representing names, such as Common Name (CN), in X.509 certificates. The encoding of a value in this syntax is the string value itself; an arbitrary string of printable characters.

X.509:
ITU standard that describes the basic format for digital certificates.